2014 : Prediksi Nilai Dengan Metode Spectral Clustering dan Clusterwise Regression

Prof. Ir. Handayani Tjandrasa M.Sc., Ph.D.


Abstract

Prediksi nilai adalah hal yang terus dikembangkan dalam penggalian data. Regresi linier merupakan metode dasar dalam memprediksi nilai berdasar variabel-variabel pada data. Salah satu hal yang mempengaruhi kualitas dari hasil regresi adalah persebaran data latih. Data latih terkadang membuat persamaan regresi kurang optimal. Hal ini dapat diantisipasi dengan mengelompokkan data terlebih dahulu kemudian membangun model regresi dari masing-masing kelompok. Pengelompokan data dilakukan dengan menggunakan algoritma Spectral Clustering, sedangkan model regresi dibangun dengan algoritma Clusterwise Regression. Hasil prediksi merupakan hasil perkalian keanggotaan fuzzy data uji dengan persamaan regresi pada masing-masing kelompok. Metode ini diujicobakan terhadap beberapa dataset yang bervariasi yang dibandingkan dengan metode regresi linear biasa. Ukuran pengujian yang digunakan adalah Root Mean Square Error yang menghitung kesalahan dari hasil prediksi. Semakin kecil nilai RMSE suatu metode maka metode tersebut semakin baik. Berdasar pada uji coba yang dilakukan, penggunaan metode yang diusulkan mampu memprediksi nilai dengan kesalahan sekitar 3 sampai 6 persen. Parameter jumlah cluster juga berpengaruh terhadap hasil prediksi yaitu berbanding terbalik dengan nilai RMSE.