2014 : Peramalan Harga Minyak Mentah menggunakan Gabungan Metode Ensemble Empirical Mode Decomposition (EEMD) dan Jaringan Syaraf Tiruan

Prof. Ir. Arif Djunaidy M.Sc., Ph.D.


Abstract

Salah satu metode peramalan harga minyak mentah yang ditujukan untuk mengakomodasi sifat harga minyak mentah yang cenderung nonlinier dan nonstasioner serta dipengaruhi banyak faktor adalah peramalan yang megintegrasikan metode empirical mode decomposition (EMD) dan jaringan syaraf tiruan (JST). Dalam metode EMD, serangkaian fungsi waktu dari data masukan ditranformasikan menjadi sejumlah modus yang terdiri dari beberapa intrinsic mode functions (IMF) dan sinyal residu. Namun, metode EMD mempunyai kelemahan karena dapat menimbulkan terjadinya modus campuran dimana sebuah IMF tunggal dapat terdefinisikan menjadi beberapa sinyal dengan skala yang berbeda atau sebuah sinyal dengan skala yang sama terbentuk dalam beberapa komponen IMF yang berbeda. Dalam penelitian ini, metode EMD diganti dengan metode ensemble EMD (EEMD) dan menambahkan sinyal white noise untuk mengkompensasi modus cam-puran yang dapat terbentuk. JST berbasis feedforward neural networkdigunakan untuk memperoleh model peramalan dari masing-masing IMF dan sinyal residu. Semua IMF dan residu yang dihasilkan dijadikan masukan pada sebuah adaptive linear neural network (Adaline) untuk menghasilkan proses peramalan. Model peramalan yang telah berhasil dikembangkan dalam penelitian ini dibangun dan diuji menggunakan data bulanan harga minyak mentah West Texas Intermediate (WTI) dan Brent. Hasil uji coba menunjukkan bahwa metode peramalan yang menggabungkan EEMD dan JST menghasilkan kinerja yang lebih baik dibandingkan metode yang menggabungkan EMD …