2019 : Magneto-Thermal Effect in Mn0. 25Fe2. 75O4-PEG Nanoparticles and Their Potential as Hyperthermia Therapy

Sigit Tri Wicaksono S.Si., M.Si., Ph.D.


Mn 0.25 Fe 2.75 O 4-PEG nanoparticles based on local iron sand were synthesized using the coprecipitation method. The characterization of sample was conducted using the X-ray Diffraction (XRD) instrument, Fourier Transform Infrared (FTIR), Small Angle X-Ray Scattering (SAXS), and Magneto-thermal each has a purpose to find out the formed phase structure, the adsorption pattern of sample functional group, nanoparticle distribution, and thermal effect of the sample. The results of characterization using XRD showing that the formed sample phase was in the form of the magnetite spinel structure. Through Rietica analysis and calculation using Debye-Scherrer, the sizes of nanoparticle samples were 7.9, 6.4, and 5.3 nm respectively with the addition of PEG concentration of 1000, 2000, and 4000. The adsorption of nanoparticle functional group was confirmed well with the appearance of Fe-O and Mn-O bound …